Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: covidwho-1963995

RESUMEN

The SARS-CoV-2 pandemic remains a major public health threat, especially due to newly emerging SARS-CoV-2 Variants of Concern (VoCs), which are more efficiently transmitted, more virulent, and more able to escape naturally acquired and vaccine-induced immunity. Recently, the protease inhibitor Paxlovid® and the polymerase inhibitor molnupiravir, both targeting mutant-prone viral components, were approved for high-risk COVID-19 patients. Nevertheless, effective therapeutics to treat COVID-19 are urgently needed, especially small molecules acting independently of VoCs and targeting genetically stable cellular pathways which are crucial for viral replication. Pamapimod is a selective inhibitor of p38 Mitogen-Activated Protein Kinase alpha (p38 MAPKα) that has been extensively clinically evaluated for the treatment of rheumatoid arthritis. Signaling via p38 has recently been described as a key pathway for the replication of SARS-CoV-2. Here, we reveal that the combination of pamapimod with pioglitazone, an anti-inflammatory and approved drug for the treatment of type 2 diabetes, possesses potent and synergistic activity to inhibit SARS-CoV-2 replication in vitro. Both drugs showed similar antiviral potency across several cultured cell types and similar antiviral activity against SARS-CoV-2 Wuhan type, and the VoCs Alpha, Beta, Gamma, Delta, and Omicron. These data support the combination of pamapimod and pioglitazone as a potential therapy to reduce duration and severity of disease in COVID-19 patients, an assumption currently evaluated in an ongoing phase II clinical study.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Diabetes Mellitus Tipo 2 , Antivirales/farmacología , Antivirales/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Pioglitazona/farmacología , Pioglitazona/uso terapéutico , Piridonas , Pirimidinas , SARS-CoV-2
2.
International Journal of Molecular Sciences ; 23(12):6830, 2022.
Artículo en Inglés | MDPI | ID: covidwho-1894226

RESUMEN

The SARS-CoV-2 pandemic remains a major public health threat, especially due to newly emerging SARS-CoV-2 Variants of Concern (VoCs), which are more efficiently transmitted, more virulent, and more able to escape naturally acquired and vaccine-induced immunity. Recently, the protease inhibitor Paxlovid®and the polymerase inhibitor molnupiravir, both targeting mutant-prone viral components, were approved for high-risk COVID-19 patients. Nevertheless, effective therapeutics to treat COVID-19 are urgently needed, especially small molecules acting independently of VoCs and targeting genetically stable cellular pathways which are crucial for viral replication. Pamapimod is a selective inhibitor of p38 Mitogen-Activated Protein Kinase alpha (p38 MAPKα) that has been extensively clinically evaluated for the treatment of rheumatoid arthritis. Signaling via p38 has recently been described as a key pathway for the replication of SARS-CoV-2. Here, we reveal that the combination of pamapimod with pioglitazone, an anti-inflammatory and approved drug for the treatment of type 2 diabetes, possesses potent and synergistic activity to inhibit SARS-CoV-2 replication in vitro. Both drugs showed similar antiviral potency across several cultured cell types and similar antiviral activity against SARS-CoV-2 Wuhan type, and the VoCs Alpha, Beta, Gamma, Delta, and Omicron. These data support the combination of pamapimod and pioglitazone as a potential therapy to reduce duration and severity of disease in COVID-19 patients, an assumption currently evaluated in an ongoing phase II clinical study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA